#### Dimensional Reasoning & Dimensional Consistency Testing

Nathaniel Osgood CMPT 858

March 29, 2011

# Talk Outline

- Motivations
- Dimensional Systems
- Dimensional Analysis
- Examples
- Discussion

# Motivations

- General
  - Dimensional analysis (DA) critical historically for
    - Scoping models
    - Formulating models
    - Validating models
    - Calibrating models
  - Systems modeling community has made important but limited use of DA
  - Strong advantages from & opportunities for improved DA use
- Specific

– Performance concerns for public health models

#### **Dimensions and Units**

- Dimensions describe semantic category of referent
  - e.g. Length/Weight/Pressure/Acceleration/etc.
  - Describe referent
  - Independent of size (or existence of) measure
  - No conversions typical between dimensions
  - A given quantity has a unique dimension
- Units describe references used in performing a particular measurement
  - e.g. Time:  $\mu$ Seconds/Weeks/Centuries
  - This is metadata: Describes measured value
  - Relates to a *particular dimension*
  - Describe measurement of referent
  - Dimensional constants apply between units
  - A given quantity can be expressed using many units
  - Even dimensionless quantities can have units

# **Units & Dimensions**

- Frequency
  - Dimension:1/Time
  - Units: 1/Year, 1/sec, etc.
- Angle
  - Dimension: "Dimensionless" (1, "Unit")
  - Units: Radians, Degrees, etc.
- Distance
  - Dimension: Length
  - Units: Meters/Fathoms/Li/Parsecs

#### Dimensional Homogeneity: Distinctions

 Adding items of different dimensions is semantically incoherent

- Fatally flawed reasoning

 Adding items of different units but the same dimension is semantically sensible but numerically incorrect

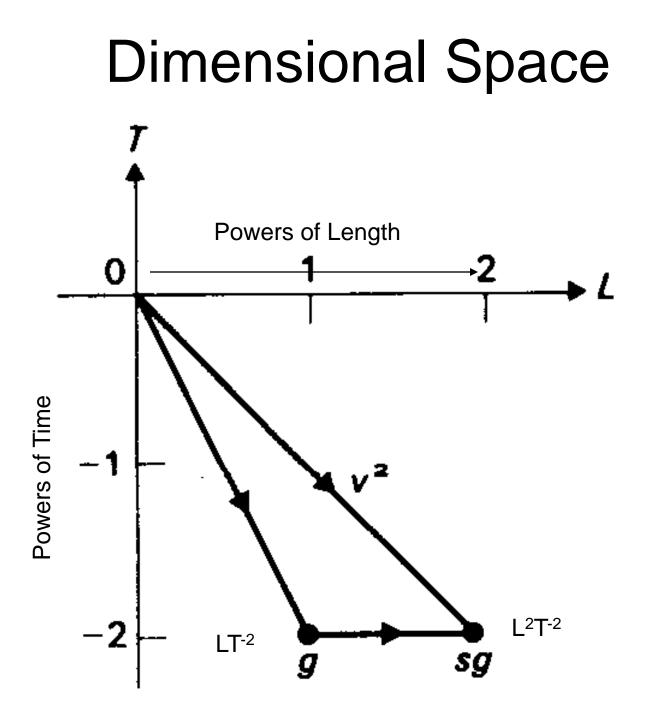
– Requires a conversion factor

#### Structure of Dimensional Quantities

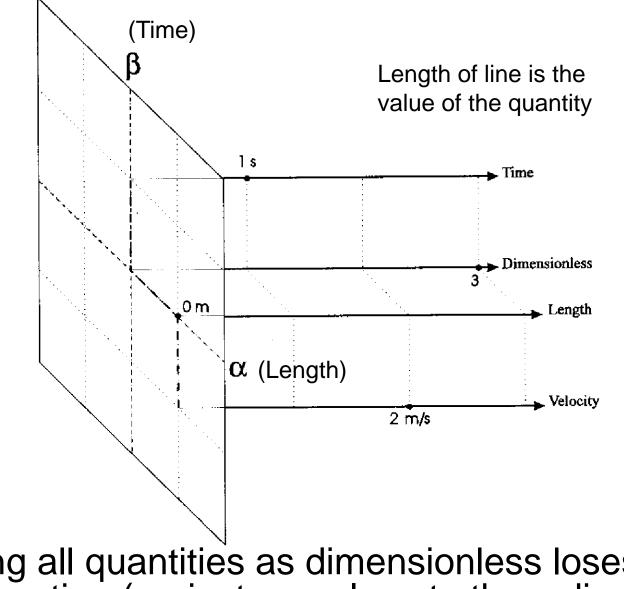
- Dimensional quantity can be thought of as a pair (value, m) where value  $\in \Re$  and  $m \in \Re^d$
- Quantity's dimension/units can be represented as
  - Products of powers of "reference" dimensions/units
     Rate of water flow: L<sup>3</sup>T<sup>-1</sup>
  - Vectors in a d dimensional vector space (of ref. dimens.)
    - Each index in the vector represents the exponent for that reference dimension/unit
- Dimension dictates the value scaling needed for *unit conversion* 
  - A *dimensionless* quantity holds the same value regardless of measurement system
- Dimensional quantities have operations that are related to but more restricted than for e.g.  $\Re$

# A Particularly Interesting Dimensionality: "Unit" Dimension

- Recall:dimensions associated with quantities can be expressed as "product of powers"
- We term quantities whose exponents are all 0 as being of "unit dimension"
- Another term widely used for this is "Dimensionless"
  - This is somewhat of a misnomer, in that these quantities do have a dimension – just a very special one
    - Analogy: calling something of length 0 "lengthless"
- Such quantities are independent of unit choice


# **Dimensionality & Unit Choice**

- Exponent for dimension dictates the numerical value scaling required by *unit conversion* 
  - Consider x=1 \$/ft and y=1 \$/ft<sup>2</sup>
    - Consider converting from feet to meters


       x=1 \$/ft \* (1ft/1m) ≈ 3.208 \$/m
       y= 1 \$/ft<sup>2</sup> \* (1ft/1m)<sup>2</sup> ≈ 10.764 \$/m<sup>2</sup>
- A dimensionless quantity maintains the same numeric value regardless of measurement system
  - Cf: Fraction = .1 (Unit Dimension)
  - $-100 \text{ ft}^2/1000 \text{ ft}^2 = .1$

# Common Quantities of Unit Dimension

- Fractions of some quantity
- Likelihoods (probabilities)



#### **Quantities in Dimension Space**



Treating all quantities as dimensionless loses information (projects purely onto the z dimension)

# Stock-Flow Dimensional Consistency

- Invariant: Consider a stock and its inflows and outflows. For any flow, we must have [Flow]=[Stock]/Time
- This follows because the Stock is the integral of the flow
  - Computing this integral involves summing up many timesteps in which the value being summed is the flow multiplied by time.

#### Seeking Hints as to the Dimension Associated w/a Quantity

- How is it computed in practice?
  - What steps does one go through to calculate this?
     Going through those steps with dimensions may yield a dimension for the quantity
- Would its value need to be changed if we were to change diff units (e.g. measure time in days vs. years)?
- Is there another value to which it is converted by some combination with other values?
  - If so, can leverage knowledge of dimensions of those other quantities

# Computing with Dimensional Quantities

- To compute the dimension (units) associated with a quantity, perform same operations as on numeric quantities, but using dimensions (units)
- We are carrying out the same operations in parallel in the numerics and in the dimensions (units).
  - With each operation, we can perform it twice
    - Once on the numerical values
    - Once on the associated dimensions

# **Dimensional Homogeneity**

- There are certain computations that are dimensionally inconsistent are therefore meaningless
- Key principle: Adding together two quantities whose dimensions differ is dimensionally "inhomogeneous" (inconsistent) & meaningless
- By extension

a<sup>b</sup> is only meaningful if b is dimensionless

Derivation:  $a^{b} = ((a/e)e)^{b} = (a/e)^{b}e^{b} = (a/e)^{b}(1+b+b^{2}/2+b^{3}/3*2*1...)$ 

The expression on the right is only meaningful if [b]:1

### **Dimensional Notation**

• Within this presentation, we'll use the notation

[x]: D to indicate quantity x is associated with dimension D

- For example,
  - [x]: \$
  - [y]: Person/Time
  - [z]: 1

#### Example

 $\frac{a+(b*c)}{d}$ Suppose further that
[a]: Person
[b]: Person/Time

- [c]: Time
- [d]: \$

To compute the dimensions, we proceed from "inside out", just as when computing value

• [b\*c]=[b]\*[c]=

(Person/Time)\*Time=Person

- [a+(b\*c)]=[a]+[b\*c]=Person
   +Person=Person
- Thus, the entire expression
   has dimension

[a+(b\*c)/d] = [a+(b\*c)/d]/[d] =Person/\$

# Lotka Volterra model

- Variables Dimensions [ $\beta$ ]: 1/(Fox \* Time) [ $\gamma$ ]: 1/(Hare \* Time) [ $\delta$ ],[ $\alpha$ ]: 1/Time •  $\dot{H} = -\beta HF + \alpha H$  $\dot{F} = \gamma HF - \delta F$
- Cf: Frequency of oscillations:  $[\lambda]$  : (1/Time)
  - Clearly cannot depend on  $\beta$  or  $\gamma,$  because
    - These parameters would introduce other dimensions
    - Those dimensions could not be cancelled by any other var.
- The exponent of Time in [ $\lambda$ ] is -1
- By symmetry, the period must depend on both  $\alpha$  and  $\delta$ , which suggests



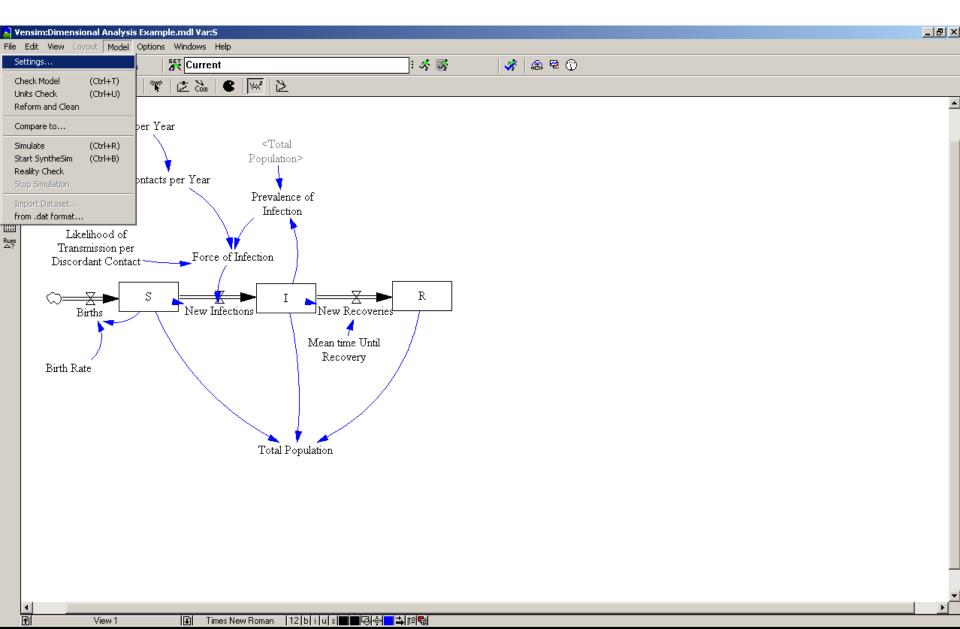
#### Classic SIR model

- Variables Dimensions
   [S]=[I]=[R]: Person
  - [ $\beta$ ]: 1 (A likelihood!)
  - [c]: (Person/Time)/Person=1/Time

$$\dot{S} = -cS\left(\frac{I}{S+I+R}\right)\beta$$
$$\dot{I} = cS\left(\frac{I}{S+I+R}\right)\beta - \frac{I}{\mu}$$
$$\dot{R} = \frac{I}{-1}$$

μ

(Just as could be calculated from data on contacts by *n* people over some time interval) [µ]: Time


Note that the force of infection 
$$\lambda = c \left( \frac{I}{S + I + R} \right) s$$
 units 1/Time, which makes sense

- Firstly, multiplying it by S must give rate of flow, which is Person/Time
- Secondly, the reciprocal of such a transition hazard is just a mean duration in the stock, which is a Time => dimension must be 1/Time

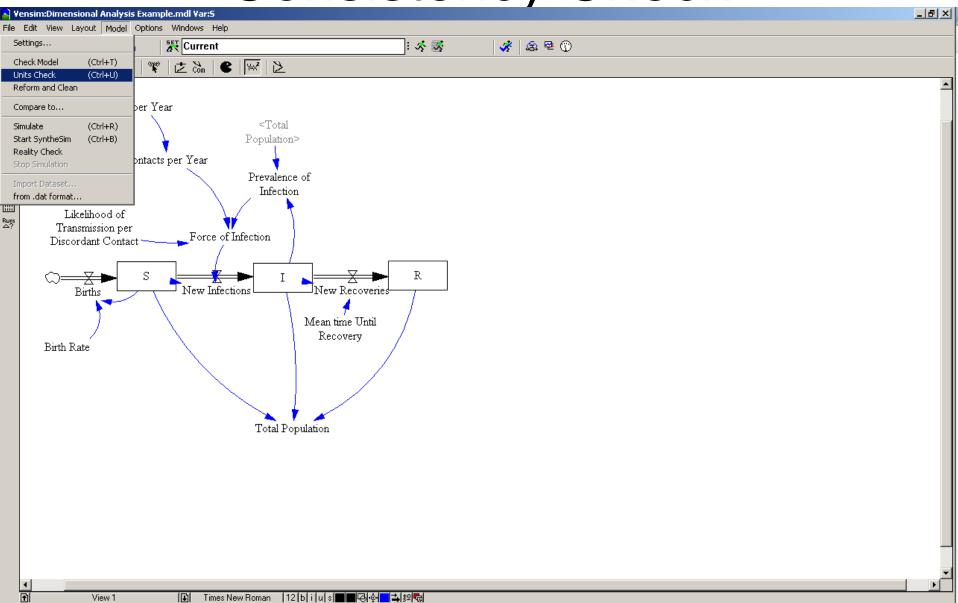
### Indicating Units Associated with a Variable in Vensim

| Editing equation for - S                    |          |
|---------------------------------------------|----------|
| S                                           |          |
| = INTEG Births-New Infections               | *<br>*   |
| Initia 999<br>Value                         |          |
| Type Undo 7 8 9 + Variables Functions More  |          |
| Level                                       | 1 1      |
|                                             |          |
| Supplementary                               |          |
|                                             |          |
| Units: Person                               |          |
| Com-<br>ment:                               | *        |
| Minimum Value Maximum Value Increment       |          |
| Errors: Equation OK                         | <b>v</b> |
| OK Check Syntax Check Model Delete Variable | Cancel   |

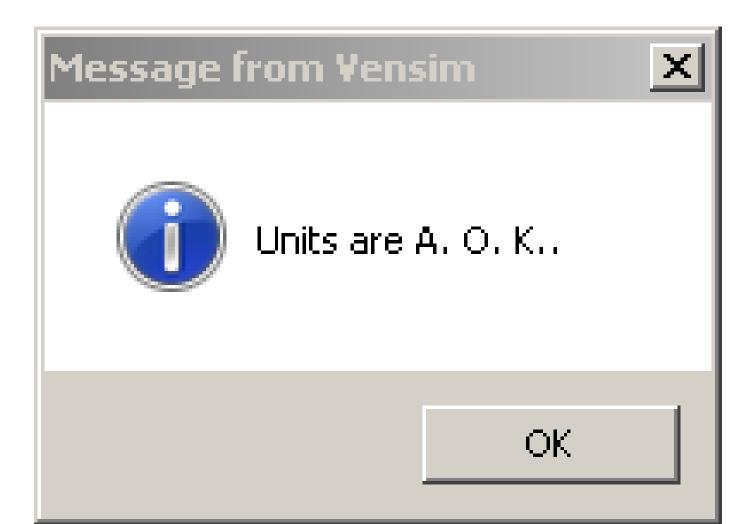
#### **Accessing Model Settings**



## **Choosing Model Time Units**


|   |         |                 | i <b>s Example.mdl ¥ar:5</b><br>Options Windows Help |                                               |       | -B× |
|---|---------|-----------------|------------------------------------------------------|-----------------------------------------------|-------|-----|
| 睝 | 🖻 🖪   🚑 | ∦ ⊫∎ (          | Current                                              | الله الله الله الله الله الله الله ال         | 💰 📾 🗹 |     |
|   |         | OK Ho<br>Births | y I                                                  | New Recoveries<br>Mean time Until<br>Recovery |       |     |

# Setting Unit Equivalence


#### Model Settings - use Sketch to set initial causes

| Time Bounds Info/Pswd Sketch Units Equ                                                                                             | ii∨ XLS Files Ref Modes                                                                                          |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| \$,Dollar,Dollars,\$s<br>Day,Days<br>Hour,Hours<br>Month,Months<br>Person,People,Persons<br>Unit,Units<br>Week,Weeks<br>Year,Years | <ul> <li>Use strictest testing</li> <li>Delete Selected</li> <li>Modify Selected</li> <li>Add Editing</li> </ul> |  |  |  |  |
| Replace these with the New Model de                                                                                                | Replace these with the New Model default synonyms                                                                |  |  |  |  |
| Make these synonyms the New Model default synonyms                                                                                 |                                                                                                                  |  |  |  |  |
| OK                                                                                                                                 | Cancel                                                                                                           |  |  |  |  |

#### Requesting a Dimensional Consistency Check



# Confirmation of Unit Consistency



#### Indication of (Likely) Dimensional Inconsistency

File Edit View Insert Model Options Windows Help 12 🖻 🖬 🛛 🞒 👗 🖻 🛍 Trent Current ። 求 🔿 💰 🖾 🕾 🕦 診 品 (1) | 汕 幽 / ∌ | ♥ | 之 汕 | ● | ▼ | 込 ≪₽ 😑 🗗 🖀 🗐 📓 Units Checking **P** Doc Error in units for the following equation: j<u>≣</u> Doc Contacts per Year = Contacts per Day \* Days per Year **⊘** Contacts per Year --> 1/Year Contacts per Day --> Contact/Day :::: Days per Year --> Days/Year Analysis of units error: Right hand and left hand units do not match Contacts per Year Stop from Vensim X Has Units: Dimensionless/Year Contacts per Day \* Days per Year There were 1 unit errors discovered. Has Units: Contact/Year OK. Total Population

\_ 8 ×

#### Vensim Interface

 Vensim will perform dimensional simplification via simple algebra on dimensional expressions

– E.g. Person/Person is reduced to 1

- In some vensim modes, when the mouse hovers over a variable, Vensim will show a pop-up "tab tip" that shows the dimension for that variable
- Vensim can check many aspects of dimensional consistency of a model

## **Vensim Capabilities**

- Associate variables with units
- Define new units (beyond built-in units)
   e.g. Person, Deer, Bird, Capsule
- Define unit equivalence e.g. "Day", "Days"